- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Phoha, Vir_V (1)
-
Salekin, Asif (1)
-
Xin, Jingyu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The recent prevalence of machine learning-based techniques and smart device embedded sensors has enabled widespread human-centric sensing applications. However, these applications are vulnerable to false data injection attacks (FDIA) that alter a portion of the victim's sensory signal with forged data comprising a targeted trait. Such a mixture of forged and valid signals successfully deceives the continuous authentication system (CAS) to accept it as an authentic signal. Simultaneously, introducing a targeted trait in the signal misleads human-centric applications to generate specific targeted inference; that may cause adverse outcomes. This paper evaluates the FDIA's deception efficacy on sensor-based authentication and human-centric sensing applications simultaneously using two modalities - accelerometer, blood volume pulse signals. We identify variations of the FDIA such as different forged signal ratios, smoothed and non-smoothed attack samples. Notably, we present a novel attack detection framework named Siamese-MIL that leverages the Siamese neural networks' generalizable discriminative capability and multiple instance learning paradigms through a unique sensor data representation. Our exhaustive evaluation demonstrates Siamese-MIL's real-time execution capability and high efficacy in different attack variations, sensors, and applications.more » « less
An official website of the United States government
